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ERROR BOUNDS FOR THE SOLUTION TO THE
ALGEBRAIC EQUATIONS IN RUNGE-KUTTA METHODS

K. DEKKER
Mathematisch Centrum, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands

Abstract.

In the implementation of implicit Runge-Kutta methods inaccuracies are introduced due to the
solution of the implicit equations. It is shown that these errors can be bounded independently of the
stiffness of the differential equation considered if a certain condition is satisfied. This condition is
also sufficient for the existence and uniqueness of a solution to the algebraic equations. The BSI-
and BS-stability properties of several classes of implicit methods are established.

1. Introduction.

Consider the class F, of ordinary differential equations
(L1) Y =f(xyx),  yo)=yo, f:R¥' RN,
satisfying for a real constant v the one-sided Lipschitz condition
(1.2) Sy =flz),y—2) Svlly—zl?, Vy,zeRY, x2x,

{.,.> being an inner product on R" with the corresponding norm ||-||. The
class of equations for which v equals zero, to be denoted by F,, is of particular
interest in the study of stiff nonlinear systems, and it has been the subject of
much recent analysis, e.g. Burrage and Butcher [1], Dahlquist [4]. A common
property of equations of this class is that the difference between two solutions,
y(x) and z(x), does not increase as x increases, and it seems natural to require
that a stable numerical method shares this property. Burrage and Butcher [1]
associate the concept of BN-stability with this property for implicit Runge-Kutta
methods and they prove that BN-stability is equivalent to algebraic stability
under some mild conditions.

In their analysis they assume that the implicit equations arising from the implicit
Runge-Kutta scheme are solved exactly. However, in practical situations we are left
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with errors made in the iteration process used to solve the implicit equations and one
may wonder whether or not these errors contaminate the final results. Moreover, it is
notsure that these equations, which are described insection 2,do haveasolution at all.
Recently, Crouzeix, Hundsdorfer and Spijker [2] have constructed an example, in
which an algebraically stable method, applied to an equation from F,, yields asystem
of nonlinear algebraic equations without a solution. They proved that algebraic
stability and irreducibility imply the existence and uniqueness of solutions for all
equations from F, with vstrictly negative. Theyalso gaveslightly stronger conditions
for problems from the class F. In section 3 we present similar results for the more
general case with v positive. We also derive bounds for the errors due to perturbations
of the algebraic equations. With these bounds we can easily establish BSI- and
BS-stability (see Frank, Schneid and Ueberhuber [10]), which is done in section 4.

Finally we consider well-known classes of implicit Runge-Kutta methods in
section 5. We show that the stepsize restrictions for BSI-stability, which are
given for some methods by Frank et al. [10], can be relaxed in case of the
Gauss, Radan IA and Radau IIA methods. We also prove that the Lobatto I1IC
methods with an odd number of stages are not BSI-stable.

2. The algebraic equations.

Let..., ¥, 1, Vn ... denote a sequence of approximations computed by the implicit
Runge-Kutta method

¢y Gyy Qg .o g
Cy a1 Gz .- Gy
. . . c | A
2.1) : : ; — — T
C Ay Ggy ... Ag
b, b, ... b

with stepsize h. The approximations are defined by the solution of the equations

2.2) Y=y, +h ) aif (X,-1+he Y),  i=1...5,
j=1

2.3) Yo = Vo1 +h Y bif(x,-y+he, X)),

j=1
for n =1,2,.... We will focus our attention to the solution of system (2.2) for
a fixed n. Introducing the vectors
Y, fx+hcy, Yy)
Y=| :|eRY FkxVY)= : €RM,
X, flx+he, Y)
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these equations can be written as

(2.4) Y=e®y,_;+(4 ® IyhF(x,_,, Y)

where ® denotes the Kronecker product, e is the column vector with each element
one and Iy is the N x N identity matrix. We also consider for some arbitrary
perturbation vector 4 the equations

(2.5) Z=e®y,_ +(A® IWhF(x,_,, Z)+ 4,

and define V=Z~Y, W = hF(x,_,, Z)—hF(x,_,, Y). Obviously, these vectors
satisfy

(2.6) V= (A® I,)W+4.

On the space R™ we define an inner product and a norm by (see Dahlquist
and Jeltsch [5], 12-13)

[V, Yo = Y d<Y, V), 1Yl =Y, Y], for ¥, ¥eR™
ji=1

where D = diag(d,,...,d,) is a positive diagonal matrix. The inner product on
R® induced by D will be denoted as

{6, Vdp = Z dx;y, Xx,yeR".

j=1

Using the matrix norms subordinate to these vector norms, we have for an
arbitrary s x s matrix A

2.7 14 ® Iyllp = ll4llp

as a simple property of the Kronecker product.
The following function appears to be of fundamental importance in our analysis.

DeriniTiION.  Let A be an sx s matrix and D a positive diagonal sx s matrix.
Then

(2.8) Yp[A] = min {Ax,x>p, xeR"

Ixllp =1

We note that i, is related with the logarithmic matrix norm u (see Dahlquist
[3]). In fact, the following relations hold (cf. Strém [11])

(2.9) o[ A] = min{A|det(DA+ATD—2iD) = 0} = — [ —A].
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3. Error bounds.

We first quote some definitions from Burrage and Butcher [1] and from
Dahlquist and Jeltsch [5].

DerFiniTiON. A Runge-Kutta method is said to be algebraically stable if
B = diag(b,, ..., b,) is nonnegative definite and BA+ATB—bb" is nonnegative
definite.

DerFINITION. A Runge-Kutta method is called reducible if there exist two sets
Sand Tsuchthat S+ ¢, SNnT=¢,SuT=1{l,....s} and

a;=0 ificT,jes.

The method is called irreducible if it is not reducible.
In [5] it is shown that B is positive for any algebraically stable irreducible
method. Consequently we arrive at (see Crouzeix et al. [2])

LemMma 3.1. Any algebraically stable irreducible method satisfies
(3.1) Ys[A4] 2 0.

Crouzeix, Hundsdorfer and Spijker [2] have constructed an algebraically stable
irreducible method and a problem from F, such that system (2.4) does not have
a solution. Thus, condition (3.1) is not sufficient for the existence of a solution.
In [2] sufficient conditions are given, restricted however to the classes F, with
v £ 0. In the sequel we consider the general case.

LEMMA 3.2. Let Y and Z be arbitrary vectors from R™, let f be a function
satisfying (1.2) and define V.=Z—Y, W = hF(x,_,, Z)—hF(x,_,, Y). Then we
have

[V, W1, < vhIIVI.

Proor: By definition of ||* ||, we have

VWlp= Y dlV, Wy = Z A Z; =Y, f(xpy +Ch, Z)— f(x,- 1 +cih, YD
i=1 i=1

é divh||Z,-— Yi“2 = Vh”V”f). .
i=1

TreOREM 3.3 Let Y and Z be solutions of the equations (2.4) and (2.5), respectively,
for some problem from F,. If A is regular and if there exists a positive diagonal
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matrix D such that
(3.2) Yp[A™ 1] > vh,

then the difference vectors V and W are bounded by

4~ lp
(3.3) Wip = m“ﬁllp,
(3.4) IWllp = NA™Hip{I1VIIp+ 114115}

Proor. Because A is regular, the matrix A ® I is invertible. Premultiplication
of (2.6) with the inverse leads to

3.5) (AP @Y -W = (A7 @ I)4.

We take the inner products with ¥, bound the left hand side from below, using
the definition of ¥, and Lemma 3.2, and bound the right side with the Cauchy-
Schwarz inequality. We thus obtain

WpLA™ ]=v)IIVIE = IVIplA™ Il 4lp

and (3.3) follows, provided (3.2) holds. The bound for W is a consequence of
the triangle inequality applied to (2.6). B

We note that y,[ A~ 1] is positive iff y,[ 4] is positive (cf. Dekker and Verwer
[7], section 5.1). Hence (3.3) and (3.4) provide error bounds valid for all v,
if yp[A4] is positive and if the stepsize h is sufficiently small. If y,[47'] =0,
then the theorem above provides bounds for the classes F, with v < 0 only.
This situation may arise if we choose D equal to the matrix B.

CoROLLARY 3.4. Let Y, Z, V and W be defined as in Theorem 3.3. Suppose that
A is regular and that the method is algebraically stable and irreducible. Then we
have for any problem from F, with v < 0

(3-6) IVIls = 147 Ill4ll15/(—vh)
(3.7) IWllp = 1147 {1 +1147 lls/(= vi)}I|4llp.
Proor. Apply Lemma 3.1 and use yz[A7'] = y[4] = 0. [ ]

Bounds for ¥ and W have also been given for methods with singular matrices 4
by Dekker [6]. However, these bounds are restricted to problems from F, with
v £ 0. For details we refer to [6] and [7, section 5.3].

So far we have assumed that the equations (2.4) and (2.5) did have a
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solution. However, this assumption remains to be proved. In the following
theorem we show that these equations have a unique solution under somewhat
milder conditions than required in Theorem 3.3. For the proof we refer to the
proof of theorem 1 contained in [2], which can be easily extended to our hypo-
thesis (see also [7]).

THEOREM 3.5. If A is regular and if there exists a positive diagonal matrix D
such that (3.2) holds, then the algebraic equations have a unique solution for any
problem from F.. If A is singular and if there exists a positive D such that
Yp[A] = O, then the algebraic equations have a unique solution for any problem
from F, with v < 0 and any stepsize.

4. BSI- and BS-stability.

In the theory of B-convergence (see [9]) the important concepts of BSI-stability
and BS-stability have been introduced by Frank, Schneid and Ueberhuber [10].
We quote their definitions.

DeriniTioN. A Runge-Kutta method is called BSI-stable if thereisa g > O and a
continuous monotonically increasing function ¢ defined on (— oo, §), where g and
& depend only on the method, such that for arbitrary vectors Y and Z satisfying
(2.4) and (2.5) one has

(4.1) IZ-YI £ (4l hv<g.

Now, let again Z be a solution of (2.5). We then define
(4.2) 2z, = Yooy ThbT @ Iy)F(x,_;,Z)+6.
DeriniTION. A Runge-Kutta method is called BS-stable if there is a § > 0 and
a continuous monotonically increasing function ¢ defined on (— o, §), where
g and ¢ depend only on the method, such that
(4.3) 22— yall £ ()IAN+181, Ay < 4.

The norms in the definitions above are supposed to be Euclidean. As the norm
induced by D is equivalent to the Euclidean norm, Theorem 3.3 applies directly,

giving a condition sufficient for BSI-stability.

THEOREM 4.1. A Runge-Kutta method is BSI-stable if A is regular and if
Yp[A™'] > O for some positive D. Moreover, one has

(44)  G(hv) = max (d/d) A /(W[4 ] =hv), by < =Yp[A""]
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Frank et al. [10] present an equivalent condition for BSI-stability. However,
in our formulation we arrive in a natural way at a stepsize restriction, which
can be computed easily, as we will show in section 5.

THEOREM 4.2. Let a Runge-Kutta method be BSI-stable and let A be regular.
Then we have

(4.5) G(rv) = IBTAT (L +B(hv), kv <§=4q.

Proor. Let 'v,, = z,—Y,. We then have, using (3.5),

l[oall = 116+ (BT @INWII = 181l +I(bTA ™ @Iy)(V — )|
= [l6ll+ ™A™ AV I+ 1141,

Substitution of the bound (4.1) for V leads to the required result. B

We remark that the requirements given in these theorems are sufficient, but
not necessary. In the next section we will show that the Lobatto I1IB methods.
which have a singular A4, are BSI-stable and not BS-stable. The importance of
the concepts of BSI-stability and BS-stability is illustrated by the following
theorem, which emanated from a discussion with Frank and Verwer.

Tueorem 4.3.  Let a Runge-Kutta method be algebraically stable, BSI-stable and
BS-stable. Then the method is B-convergent.

Proor. We refer to [7, section 7.4] for the details. Here we note that BS-stability
implies B-consistency (cf. [9]), whereas algebraic stability together with BSI-
stability implies B-stability. In Frank et al. [9] it is shown that B-convergence
follows from B-stability and B-consistency. [ ]

5. Results for various Runge-Kutta schemes.

The applicability of the theorems of the previous section depends essentially
on the determination of a suitable matrix D, such that y,[4 '] is large enough.
This task does not seem easy at first glance, but in all examples considered it
turns out to be very simple. In fact it is easily seen that for all positive D an
upper bound is given by

(5.1) YplA71] = min (4~ i

Moreover, this bound is attained if DA™! + (DA™ ')T is a diagonal matrix. There-
fore we have chosen D in such a way that the elements d;(4™');; and d;(4™")y;
are equal in modulus, and we found out that for this particular choice all off-
diagonal elements vanished. We present the results in the following examples.
For details we refer to [7, sections 5.5-5.9].
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ExampLE 5.1. Consider the s-stage Gauss method and define
(5.2) C = diag(cy, - C)s
(5.3) D=B(C '-I,).
Then D is positive and one can show that

DA '+ (DA™ )T = BC™*
Consequently,

i

Yp[47'] = $min (BC™?D™"); = min (¢;—¢f) ™",

which is positive because ¢;(0,1) for i = 1,...,s. We conclude that the Gauss
method is BSI-stable and BS-stable with the stepsize restriction

(54) 7=4=4min (,—c})™",
We note that the condition on the stepsize given in [10] is more restrictive.
ExampLE 5.2. Consider the s-stage Radau IA method and define
(5.5) D = B(I,—C).
Again D is positive and one finds
DA '+ (DA™Y)T = B+e,el.
Consequently,

(5.6) ‘pD[A_l] = %min (1 "‘Ci)—l,
iZ2

and BSI- and BS-stability follow. Again, the stepsize condition is less restrictive
than the one given in [10].

ExampLE 5.3. Consider the s-stage Radau IIA method and define
5.7 D = BC™%.

Then D is positive and we obtain after some calculations

DA™ 4+ (DA™Y = BC~%+egel.
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As a result we have

" - .
Zmin ()™ ifs 22,
i<

(5.8) Yold™'] = {1 ) ifs=1.

Consequently the method is BSI- and BS-stable. We note that the values given

by (5.6) and (5.8) are equal, because of the relation between the Radau IA
points ¢; and the Radau IIA points ¢;, given by ¢; = 1 =&, ,_;,,i= 1,...,s

ExamPLE 5.4. The two-stage Lobatto IIIC method is BSI- and BS-stable, according
to Frank, Schneid and Ueberhuber [10]. A simple calculation shows i [47']=1,
so we have a stepsize restriction with § = § = 1. We observe that this condition
is less restrictive than the one given by Burrage and Butcher [1, Example 5.4].

ExampLES.5.  Consider the s-stage Lobatto HIC method with s odd. In Dekker [6]
it is shown that in case of the three-stage method no bound on V exists for
problems from F,. This result can be generalized for arbitrary odd s. In fact,
by choosing x = e; —e, in (2.8), it is easily seen that

(5.9) Yol4] =0

for all positive diagonal D, and thus we have y,[4~'] < 0. Hence Theorem 3.3
only applies to the classes F, with v < 0. The differential equation

(5.10) y'(x) = Ax)y(x),

_— fori=1lori=s
Aoy +cih) = {0 for2<iss—1,

with y > 0 provides a counterexample from the class F,. It is easily seen that
V= (e —vhlayg —ay)e 0 —Yh(a 1=y e —€)

satisfies equation (2.6) with 4 = (¢,0,...,0, —¢)”. Consequently ||V/]|/||4]| increases
beyond all bounds by taking y large enough.

We conjecture that relation '(5.9) also holds for the methods with s even and
larger than 2. We verified this by numerical computations for s = 4, 6, 8, 10.
However, we did not find a simple counterexample for the lack of BSI-stability
for these methods.

ExaMpLE 5.6. Consider the Lobatto IIIA and IIIB methods (see Ehle [8]). These
methods are not algebraically stable, and it is easy to show that they are not
BS-stable, either. To that end one should consider problem (5.10) with a function
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A(x) satisfying A(x,_,) = 4(x,_; +h) = —y and A(x) = 0 in the internal abscissae.

The BSI-stability behaviour of these methods is.remarkably different. The
Lobatto IIIA methods are not BSI-stable, but the ITIIB methods are, with a
stepsize restriction given by § = § = (1—c,)”". This result can be proved by
considering the (s—1)x (s—1) matrix 4, which is obtained from the singular
matrix A by deletion of the last row and column. Reducing B and C in a
similar way, and choosing

5 = E(Is—l -6)23
we obtain
DA~ '+ (DAY =2B(,_,~C)+¢,eT.

After some straightforward calculations we obtain yp[A™'] = (1—c,)7 "
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